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which is based upon a semi-implicit finite difference
method with staggered grid and donor-cell discretizationA second-order accurate scheme based on high-resolution shock-

capturing methods was used with a typical two-phase flow model of the convective terms [35]. The main advantages of such
which is used in the computer codes for simulation of nuclear power a scheme are robustness and efficiency. The weak side of
plant accidents. The two-fluid model, which has been taken from the the scheme is its numerical dissipation, which tends to
computer code RELAP5, consists of six first-order partial differential

smear discontinuities on coarse grids. Numerical dissipa-equations that represent 1D mass, momentum, and energy balances
tion cannot be easily avoided with the existing type of thefor vapour and liquid. The partial differential equations are ill-

posed—nonhyperbolic. The hyperbolicity required by the presented scheme, since this dissipation presents the main mechanism
numerical scheme was obtained in the practical range of the physi- which removes the ill-posedness from the discretized equa-
cal parameters by minor modification of the virtual mass term. No tions and ensures the scheme’s stability. The RELAP5
conservative form of the applied equations exists, therefore, instead

code successfully covers the area of the transients withof the Riemann solver, more basic averaging was used for the
characteristic time scale determined by the fluid velocityevaluation of the Jacobian matrix. The equations were solved using

nonconservative and conservative basic variables. Since the source [27], but it has to be used with extreme caution for tran-
terms are stiff, they were integrated with time steps which were sients with acoustic waves [21].
shorter than or equal to the convection time step. The sources were The main directions of the development of today’s two-
treated with Strang splitting to retain the second-order accuracy

phase flow models are: improvement of the mathematicalof the scheme. The numerical scheme has been used for the
models (better closure models, from 1D into 3D) and im-simulations of the two-phase shock tube problem and the Edwards

pipe experiment. Results show the importance of the closure laws provement of the numerical methods. To obtain optimum
which have a crucial impact on the accuracy of two-fluid models. results, parallel improvement in both fields is necessary.
Advantages of the second-order accurate schemes are evident This paper presents the application of an advanced numeri-
especially in the area of fast transients dominated by acoustic

cal scheme using the existing two-fluid model of RELAP5phenomena. Q 1997 Academic Press

computer code; however, we believe that this type of nu-
merical schemes will also be useful for the next generation
of mathematical models of two-phase flow.1. INTRODUCTION

The most important contributions in the field of second-
Safety analyses of nuclear reactors require computations order accurate methods for two-phase flows were pre-

of complex two-phase flows. RELAP5 computer code viously concentrated on the construction of Roe’s approxi-
[6, 2, 35] is one of the few codes (CATHARE [3], TRAC mate Riemann solver [23]. Toumi [30] presented a weak
[33]) that were created for this purpose. The current ver- formulation of Roe’s approximate Riemann solver for the
sion of the code describes two-phase flow with a six-equa- homogeneous equilibrium two-phase flow, and later [31,
tion two-fluid model. The equations are one-dimensional 32] applied this solver to a simple two-fluid model of two-
since the direction of the flow is clearly defined. The system phase flow. However, he concluded that solution of the
of the six first-order partial differential equations is derived Riemann problem is unknown for the nonconservative sys-
from the cross-section averaged Navier–Stokes equations tems and that there is no exact solver available to check
[4, 12, 2]. Diffusion terms with second-order derivatives are the validity of the presented numerical solutions and the
replaced by empirical correlations which are flow regime speed of the computed discontinuities.
dependent. The type of the flow regime is determined by This article attempts to emphasize the most important
the flow parameters and the geometry. The basic RELAP5 aspects of the two-phase flow modelling with second-order
equations are ill-posed, nonhyperbolic with complex eigen- accurate schemes and to offer some possible answers to
values, while the discretized equations are well-posed [25]. the questions: When is it meaningful to apply a second-
The ill-posedness of the discretized equations in RELAP5 order accurate scheme for the presented two-fluid model

with limited reliability of the applied empirical correla-is avoided by the first-order accurate numerical scheme
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tions? How to write the basic equations? How to evaluate
characteristic velocities? How to treat source terms? The arg ug

t
1

1
A

arg ugvg A
xbasic equations and closure models are described in Section

2. In Sections 3 and 4 it is shown how to ensure the hyper-
5 2p

a
t

2
p
A

avg A
x

1 Qig 1 Gg h*gbolicity of the two-fluid models, which is required for the
application of the presented second-order numerical
scheme. The numerical method is presented in Section 5,

1
1
2

arg
fwg

D
v2

g uvg u. (6)and treatment of the sources in Section 6. The model of the
single to two-phase flow transition is discussed in Section 7.
In Section 8 behaviour of the discontinuous solutions is Index f refers to the liquid phase and index g to the gas
analyzed. Sections 9 and 10 present two-phase shock tube phase. Nomenclature has not been typed, however, most
results and results of the Edwards experiment. of the variables are described in text and Table 1. Two

additional equations of state for each phase are needed to
2. BASIC EQUATIONS close the system of equations. The equation of state for

phase k is
The basic mathematical model considered in this paper

is a six-equation equal-pressure two-fluid model used in
computer code RELAP5. The basic equations are mass, drk 5 Srk

pDuk

dp 1 Srk

uk
D

p
duk ,

momentum, and energy balances for the dispersed flow of
vapour and liquid [6] with equal phasic pressures. The 1D
equations are written in a form which allows for a smooth Srk

pDuk

5
cpk kk rk 2 Tk b2

k

cpk 2 pbk /rk
, (7)

change of the pipe cross-section:

Srk

pDp
5 2

bk rk

cpk 2pbk /rk
.(1 2 a)rf

t
1

1
A

(1 2 a)rf vf A
x

5 2Gg , (1)

Partial derivatives in Eq. (7) are expressed by variablesarg

t
1

1
A

argvgA
x

5 Gg , (2) which are determined by the RELAP5 subroutines of wa-
ter properties using pressure and specific internal energy
as an input.(1 2 a) rf

vf

t
1

1
2

(1 2 a)rf
v2

f

x The terms in Eqs. (1)–(6), which require additional clo-
sure models, can be separated into two groups:

5 2(1 2 a)
p
x

1 (1 2 a)rf g cos u
(I) Differential terms contain derivatives and influence

the character of the equations. The only differential model
applied in Eqs. (1)–(6) is the virtual mass term CVM in2

1
2

(1 2 a)rf
fwf

D
uvf uvf

momentum equations (3) and (4). It contains derivatives
of the phasic velocities vf , vg and is described in Section 3.

2Gg (vi 2 vf ) 1
CD

8
rc agf uvr uvr 1 CVM, (3) (II) Nondifferential terms (see Table I). Their closure

models do not contain derivatives. Nondifferential terms
can be further divided into two groups on the basis of theirarg

vg

t
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1
2

arg
v2

g

x
5 2a

p
x

1 arg g cos u
characteristic time scales:

(i) Terms for interphase exchanges with characteristic
2

1
2

arg
fwg

D
uvguvg 1 Gg (vi 2 vg ) time scales shorter than the acoustic time scale (terms with

Gg , Qif , Qig , CD ). These terms require special treatment
in the numerical schemes.

2
CD

8
rc agf uvr uvr 2 CVM, (4)

(ii) Terms for fluid–wall interactions (wall friction,
wall–fluid heat exchange) and volumetric forces with long(1 2 a)rf uf

t
1

1
A

(1 2 a)rf uf vf A
x

characteristic time scales which do not present any diffi-
culty for the numerical schemes. For this reason we ne-
glected wall-to-fluid heat exchange terms in the energy

5 2p
(1 2 a)

t
2

p
A

(1 2 a)vf A
x

1 Qif equations (5) and (6) in our code named PDE2 (partial
differential equations 2nd order). Tests have shown that
wall friction terms can also be neglected in the transients

2 Gg h*f 1
1
2

(1 2 a)rf
fwf

D
v2

f uvf u, (5)
presented in this paper. The correlations used in the tests
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TABLE I

Nondifferential Closure Models in Two-Fluid Model,
Eqs. (1)–(6)

CD 5 24(1 1 0.1Re0.75
k )/Rek interphase drag coefficient [6, 13],

Rek 5 vr d0rc /ec Reynolds number of bubbles or droplets,
d0 average bubble/droplet diameter, d0 5 dmax /2, dmax 5 Wecritical s /rcv2

r

agf 5 3.6 ad/d0 interfacial area per unit volume [6, 37],
ad 5 a in bubbly flow and ad 5 (1 2 a) in droplet flow

Gg 5 2(Qif 1 Qig )/(h*g 2 h*f ) vapour source
Qif 5 Hif (Ts 2 Tf ), Qig 5 Hig (Ts 2 Tg) interface heat transfer terms
Hif , Hig liquid-interface and gas-interface heat transfer coeff. per unit volume
Bubbly flow:

(Hif )superheated 5 max(Plesset-Zwick correlation [6, 22], modified Lee-Ryley [6, 15])
(Hif )subcooled 5 Unal correlation [6, 36]
(Hig )superheated,subcooled 5 Nagf , N constant [6, 5]

Droplet flow:
(Hif )superheated,subcooled 5 Nkf agf /d0 [6]
(Hig )superheated 5 Lee-Ryley correlation [6, 15]
(Hig )subcooled 5 Magf , M constant [6]

vi 5 vg during condensation and vi 5 vf during vaporization or in equilibrium.

fw 5 Colebrook correlation [7]—friction factors
bubbly flow: fwf 5 Colebrook correlation, fwg 5 0
droplet flow: fwg 5 Colebrook correlation, fwf 5 0

for the fwf and fwg coefficients in wall friction terms of RELAP5 which is valid for highly dispersed flows. How-
ever, we used the same correlations also for the situationsmomentum equations (3) and (4) present a simplification

of the RELAP5 correlations described in [6]. in which some other flow regimes might appear. The com-
plete set of applied correlations is still very comprehensive

Most of the closure laws in RELAP5 are flow regime
and is therefore not presented here. Survey of the applied

dependent. Two basic groups of flow regimes in RELAP5
correlations for CD , agf , Hif , Hig is collected in Table I,

are flow regimes in horizontal and vertical pipes. RELAP5
while the details can be found in [6]. Although we used

recognizes five flow regimes in horizontal pipes: bubbly,
the simplest flow regime map, the correlations represented

slug, annular-mist, droplet, and horizontally stratified flow
one-third of our code.

regime. The type of the flow regime in horizontal flows is
determined by the relative interphase velocity vr and va- 3. HYPERBOLICITY OF THE EQUATIONS
pour volume fraction a. Similar flow regimes can be met
in vertical pipes (the closure laws are not necessarily the The basic equations of the equal-pressure two-fluid mod-

els often present an ill-posed problem with complex eigen-same), where mixture velocity and the vapour volume frac-
tion determine the flow regime [19]. An additional set of values of the Jacobian matrix [6, 25]. However, additional

differential terms—which are usually added into the basicso-called postdryout flow regimes is present in vertical
pipes when pipe surface temperatures and heat fluxes are equations—can make the equations well-posed.

An additional differential term which is usually takentoo high to allow surface wetting [6]. Exact modelling of
all the flow regimes described in RELAP5 would be a very into account in the momentum equations of the 1D two-

fluid models is the virtual mass term. The virtual masshard and time-consuming task and would be justified only
in the case when a new code version might be produced. term represents the interphase force which appears as a

consequence of the different phasic accelerations and canIn the PDE2 code with second-order accurate scheme, as
presented in this paper, two flow regimes were modelled be analytically derived for a single solid sphere (bubble or

drop) in inviscid flow [37]. The form of the virtual mass(see Table I): bubbly (a # 0.5) and droplet (a $ 0.95)
regimes of two-phase flow. Interpolation of the parameters term in realistic two-phase flows is not known exactly,

and thus, different computer codes for nuclear thermalhas been used for the intermediate vapour volume fractions
(0.5 , a , 0.95). These correlations were used because hydraulics simulations [6, 3, 33] use different forms of the

virtual mass term. The most general form of the virtualthey present the simplest complete flow regime map in
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mass given by Drew et al. [8] contains the following deriva- Another additional differential term is often used in
momentum equations of the computer codes for thermaltives:
hydraulics—the interface pressure term Pi=a. It is clearly
derived in stratified flows, Pi 5 a(1 2 a)(rf 2 rg )gD, and

CVM Y Cvm Svg

t
1 vf

vg

x
2

vf

t
2 vg

vf

x
(8)

is used in stratified flow regimes in RELAP, CATHARE,
and TRAC codes [6, 3, 33]. Parameter Pi is called the
interface pressure, even though it is not the actual pressure

1 (1 2 l)(vg 2 vf )
(vf 2 vg )

x D, on the interface and should not be confused with the pres-
sure on the interfacial surface when the interface pressure
term is written in the form (pki 2 pk )=a [24]. The role ofwhere the parameter l should be a function of the vapour
the interface pressure term in nonstratified flows is rathervolume fraction with value 2 for a R 0 and 0 for a R 1.
controversial, as can be seen from a paper by Sha andIn the RELAP5 code, the parameter l is set equal to 1;
Soo [24] who collected different views on the role of thehowever, due to problems with the RELAP5 numerical
interface pressure term. There is no interface pressurescheme, all spatial derivatives were also neglected:
term in nonstratified flow regimes of RELAP5 code, while
CATHARE code [3] uses the Pi=a term in nonstratified

CVMRELAP5 5 Cvm a(1 2 a)rm
vr

t
. (9) flows to ensure the hyperbolicity of the equations. Toumi

[31] attempted to apply an approximate Riemann solver
for Eqs. (1)–(6), where the CVM term in Eqs. (3) and (4)The basic equations with that type of the virtual mass term
has been replaced with the interface pressure takenare still ill-posed, and so we retained the spatial derivatives
from CATHARE:in the virtual mass term:

Pi
a
x

, Pi 5
di a(1 2 a)rg rf v2

r

arf 1 (1 2 a)rg
. (12)CVMPDE2 5 Cvm a(1 2 a)rm Svg

t (10)

This correlation does not have any physical background,
1 vf

vg

x
2

vf

t
2 vg

vf

xD.
but it does ensure the hyperbolicity of the equations for
di $ 1 and vr & 0.3c.

The transients presented in this paper are analyzed byThe hyperbolicity of the equations with CVM (10) was
the RELAP5 two-fluid model with virtual mass term (10).achieved in our PDE2 code by minor modification of the
Since any differential closure model can be applied in two-RELAP5 virtual mass coefficient Cvm [38]:
fluid models, some results are presented also for the two-
fluid model with interface pressure term (12) in order to
check the role of the additional differential terms.

Cvm-RELAP5 55
1 1 2a
2 2 2a

, a , 0.5,

3 2 2a
2a

, a . 0.5,
R

4. APPROXIMATE EIGENVALUES
AND EIGENVECTORS

The system of Eqs. (1)–(6) represents the conservation
laws; however, it cannot be written in the conservative

Cvm2PDE2 55
(1 1 2a)/(2 2 2a), a , 0.5,

!S3 2 2a
2a D2

2
(a 2 1)(2a 2 1)

(1 1 arg /rf 2 a)2, a . 0.5. form due to the pressure gradient terms and additional
differential terms. The equations are therefore written in
the nonconservative form,(11)

This correction of the virtual mass coefficient is based on A
C

t
1 B

C

x
5 S, (13)

the approximate analytical expressions for the Jacobian
eigenvalues (Section 4, Eq. (15)) derived with the assump-
tion of mixture incompressibility [28]. The form of the where C represents the vector of the nonconservative vari-

ables C 5 (p, a, vf , vg , uf , ug ). For evaluation of thevirtual mass coefficient derived on the basis of such as-
sumption does not guarantee unconditional hyperbolicity approximate eigenvalues the enthalpy form of the energy

equations with C 5 (p, a, vf , vg , hf , hg ) is more convenient.of the equations, i.e., complex eigenvalues can appear at
extremely large relative interphase velocities vr which are In this case the system eigenvalues are given by the deter-

minant det(B 2 lA) 5 0:comparable to the sonic velocity: vr * 0.3c.
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Det

(1 2 a)
rf

p
(vf 2 l) 2rf (vf 2 l) (1 2 a)rf 0 (1 2 a)

rf

hf
(vf 2 l) 0

a
rg

p
(vg 2 l) rg(vg 2 l) 0 arg 0 a

rfg

hg
(vg 2 l)

1 2 a Pi (1 2 a)rf (vf 2 l) 1 W(vg 2 l) 2W(vf 2 l) 0 0

a 2Pi 2W(vg 2 l) arg(vg 2 l) 1 W(vf 2 l) 0 0

2
vf 2 l

rf
0 0 0 vf 2 l 0

2
vg 2 l

rg
0 0 0 0 vg 2 l

5 0.

(14)

with W 5 Cvm a(1 2 a)rm . sented here. Only two-phase sonic velocity is given instead.
The expression for the sonic velocity can be obtained ifRELAP5 eigenvalues are obtained if Pi is set equal to

zero, and eigenvalues of the Toumi model with an interface both phasic velocities are set equal to zero in the determi-
nant (14):pressure term are obtained if W is set equal to zero. Two

trivial eigenvalues are l5 5 vf and l6 5 vg . Fields belonging
to l5,6 are linearly degenerate. If incompressibility of both

c2 5
rf rg

arf

c2
g

1
(1 2 a)rg

c2
f

Cvm rm 1 arf 1 (1 2 a)rg

Cvmr2
m 1 rf rg

,

(17)

phases is assumed, all partial derivatives of densities are
equal to zero, and two approximate eigenvalues for the
RELAP5 equations derived by Trapp and Ransom [34]
are obtained:

c22
f 5Srf

pDhf

1
1
rf
Srf

hf
D

p
, c22

g 5Srg

pDhg

1
1
rg
Srg

hg
D

p
.

l3,4 5
[(1 2 a)rg 1 Cvm rm /2]vg 1 [arf 1 Cvmrm /2]vf 6 ÏDvr

arf 1 (1 2 a)rg 1 Cvmrm
,

One can see that the virtual mass term does appear in (17),
while the interface pressure term—which contains onlyD 5 (Cvm rm /2)2 2 a(1 2 a)rf rg. (15)
the spatial derivatives of the vapour volume fraction—does
not affect the sonic velocity.These two eigenvalues are real for positive D and are al-

Another interesting insight into the two-phase flowways between l5 and l6 ; i.e., if l5,6 . 0 then l3,4 . 0. A
equations is given by the approximate eigenvectors. Thesimilar procedure for the equations with interface pressure
structure of the eigenvectors matrix can be written asterm yields

L 5 ul1 l2 l3 l4 l5 l6 u
l3,4 5

(1 2 a)rgvg 1 arfvf 6 ÏDvr

arf 1 (1 2 a)rg
,

(16)
D 5 (di 2 1)a(1 2 a)rf rg .

In this case third and fourth eigenvalues do not necessarily 5

/ / q13v2
r q14v2

r 0 0

/ / 1 1 0 0

/ / q33vr q34vr 0 0

/ / q43vr q44vr 0 0

/ / q13v2
r /rf q14v2

r /rf 1 0

/ / q13v2
r /rg q14v2

r /rg 0 1

. (18)
lie between the phasic velocities, and it may even happen
that for l5,6 . 0 one of the eigenvalues l3 or l4 becomes
negative. Characteristic fields of l3,4 are genuinely non-
linear.

The first and second eigenvalues, which correspond to
the fastest sonic characteristics are obtained from the exact The exact form of the first and second eigenvectors which

correspond to the sonic eigenvalues is not given since itcharacteristic polynomial (14) and known roots l3 to l6 .
The expressions for l1 and l2 are long and are not pre- does not concern the general properties of the equations.
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The structure of the third and fourth eigenvectors shows tual mass term and interface pressure term for stratified
flows, CATHARE uses a different virtual mass term thantwo interesting properties of the two-phase flow equations:
RELAP5 and an interface pressure term in all flow re-—The first is the degeneration of the third and fourth
gimes, TRAC code uses the third form of the virtual masseigenvectors as relative velocity approaches zero: vr R 0.
term. Figure 1 presents a comparison of the RELAP5 two-There are two possible solutions for this situation; the strict
fluid model (1)–(6) with virtual mass term (10), (11), withsolution is to solve only five equations in the points where
Toumi’s two-fluid model without virtual mass term andvr 5 0. In that case, a separate subroutine for the calculation
with interface pressure term (12) with di 5 1.01. Pressureof the eigenvalues and eigenvectors is needed. An addi-
and vapour velocity profiles are shown for Toumi’s shocktional complication in that case is the comparison of the
tube [31]. Toumi’s two-phase shock tube is a Riemanncharacteristic variable gradients (Eq. (30)) between two
problem for two-fluid models. An infinite tube is filled withpoints; one with a five-equation model and the other with
gas-liquid mixture with the left and right states defined as:a six-equation model. A much simpler solution is to main-

tain a small artificial relative velocity (vr 5 max(vr , 1029) —left state: a 5 0.25, p 5 20 MPa, vg 5 0 m/s, vf 5 1
for positive vr and vr 5 min(vr , 21029 ) for negative vr ) m/s, ug 5 2824 kJ/kg, uf 5 1311 kJ/kg;
for the calculation of the third and fourth eigenvalues and

—right state: a 5 0.1, p 5 10 MPa, vg 5 0 m/s,eigenvectors. Both methods were tested and practically
vf 5 1 m/s, ug 5 2836 kJ/kg, uf 5 1330 kJ/kg.the same results were obtained; i.e., the second simpler

method with small artificial vr can be used without loss
The membrane which separates left and right part of theof accuracy.
tube at the position 5 m is removed at time zero. All

—The first component of the third and fourth eigenvec- nondifferential terms, i.e. sources, were neglected in both
tors is not equal to zero for nonzero relative velocity. This cases in order to get a better insight into the structure of the
component corresponds to the propagation of the pressure differential terms. Figure 1 thus cannot present a realistic
disturbances (Eq. (22)) and that means that the pressure physical situation. A significant difference can be seen be-
disturbance will not only propagate with the sonic charac- tween the speed of the waves for different additional differ-
teristics l1 and l2 but also with the third and fourth charac- ential terms. Relative velocities in the case with an inter-
teristic velocities (Fig. 1). In realistic two-phase flows, in face pressure term are large (p200 m/s) and comparable
which relative velocities are not too high, pressure waves with sonic velocities (p700 m/s), thus accuracy of the ap-
travelling with l3 and l4 are very weak and the main pres- proximate expressions for the eigenvalues and eigenvec-
sure disturbances propagate usually only with the sonic tors is not sufficient, and numerical decomposition of the
characteristics. Fifth and sixth eigenvectors are trivial and Jacobian matrix is used. The virtual mass term reduces
do not deserve special attention; it need only be mentioned sonic velocity and does not allow such large relative veloci-
that pressure, vapour volume fraction, and phasic velocity ties as the interface pressure term.
disturbances do not propagate with l5 and l6 . Analysis of the eigenvalues and results in Fig. 1 shows

the role of the additional differential terms in two-fluidIn the current version of our PDE2 code eigenvalues
and eigenvectors are determined using a combination of models. Since different authors and codes use different

additional differential terms it is clear that uncertaintythe approximate analytical expressions (15), (16), where
possible and CPU expensive numerical procedures in the of two-fluid models is significant. The uncertainty of the

additional differential terms becomes less important in re-area where error of the approximate eigenvalues is too
large. If approximate expressions are used for uvf u, uvgu, uvr u alistic two-phase flow models where source terms are in-

cluded. Interphase exchange sources tend to establish me-, 0.05c and uvr u , 10 m/s and numerical procedures are
used otherwise, the maximal relative error of the approxi- chanical and thermal equilibrium between both phases.

These equilibrium states are equal, no matter which addi-mate eigenvalues appears to be around 1023. In a realistic
simulation, the conditions which allow for use of the ap- tional differential terms are used. As the interphase ex-

change source terms increase, the solutions of the two-proximate eigenvalues are fulfilled most of the time. Nu-
merical calculation of the eigenvalues and eigenvectors fluid models with different additional differential terms

become closer. Solutions of the two-fluid model with infi-was performed with the subroutines from the EISPACK
library [26], which are capable of finding the eigenvalues nite interphase exchange sources would be equal to the

solutions of the three-equation homogeneous-equilibriumand eigenvectors of an arbitrary matrix.
From the discussion above we can see that the behaviour model of two-phase flow [30]. While the importance of the

uncertainty of the additional differential terms is decreasedof the two-fluid models strongly depends on the additional
differential terms used. Each of the today’s computer codes with the introduction of the source terms, inclusion of the

sources introduces a new uncertainty which is even morefor the simulations of nuclear thermalhydraulics uses dif-
ferent additional differential terms. RELAP5 uses the vir- important and is analyzed in Sections 9 and 10.



510 TISELJ AND PETELIN

5. NUMERICAL METHOD A problem of the pure second-order accurate discretiz-
ations is presented by the oscillations which appear in the

The PDE2 code used for solving the six-equation model vicinity of the nonsmooth solutions. The problem is solved
of the two-phase flow with a second-order accurate scheme [23, 16] if the combination of the first- and second-order
can be used for hyperbolic problems. The system of Eqs. accurate discretizations is used. Part of the second-order
(13) can be multiplied by A21 from the left. If the sources, discretization is determined by the so-called flux limiters
which are described in the next section, are omitted, we [16] which ‘‘measure’’ the smoothness of the solutions. If
obtain the solutions are smooth, the larger part of the second-

order discretization is used; otherwise the larger part of
the first-order discretization is used.C

t
1 C

C

x
5 0 (19)

The final discretization of Eq. (23) is

with C 5 A21B as Jacobian matrix. If the eigenvalues and
eigenvectors of the matrix C are found by the methods j n11

j 2 j n
j

Dt
1 (L11 )n

j21/2
j n

j 2 j n
j21

Dx
1 (L22)n

j11/2
j n

j11 2 j n
j

Dx
5 0.

described in Section 4, the Jacobian matrix can be writ-
ten as (26)

C 5 L L L21, (20)
Elements of the diagonal matrices L11, L22 are calcu-
lated aswhere L is a matrix of the eigenvectors and L the diagonal

matrix of the eigenvalues. If expression (20) is taken into
account in Eq. (19), and Eq. (19) multiplied by L21 from

l11
k 5 max(0, lk ) 1

fk lk

2 Slk
Dt
Dx

2
lk

ulk uD, k 5 1, 6, (27)the left, we obtain

L21 C

t
1 LL21 C

x
5 0. (21)

l22
k 5 min(0, lk ) 2

fk lk

2 Slk
Dt
Dx

2
lk

ulk uD, k 5 1, 6. (28)

The vector of the characteristic variables is introduced as

Different flux limiters fk are available in [16]. One of them
dj 5 L21dC, (22) is minmod limiter:

where dj represents an arbitrary variation: j/t or j/x.
Equation (19) can be written in the characteristic form fk 5 max(0, min(1, uk )), k 5 1, 6, (29)

j

t
1 L

j

x
5 0. (23) where uk measures the ratio of the left and the right gradi-

ents in the grid point j 1 1/2:

An improved characteristic upwind discretization [11]
of Eq. (23) with an explicit finite difference scheme is

uk, j11/2 5
jk, j112m 2 jk, j2m

jk, j11 2 jk, j
, m 5

lk, j11/2

ulk, j11/2 u
,

(30)j n11
j 2 j n

j

Dt
1 (L1)n

j21/2
j n

j 2 j n
j21

Dx
1 (L2)n

j11/2
j n

J11 2 j n
j

Dx
5 0

k 5 1, 6, j 5 1, N 2 1.
(24)

If Eq. (26) is transformed into basic variables we obtain
and is first-order accurate in time and space. L1 is equal a difference scheme that is used in PDE2 code,
to the matrix L with negative eigenvalues set equal to zero,
and L2 is equal to the matrix L with positive eigenvalues
set equal to zero. Cn11

j 2 Cn
j

Dt
1 C11

j21/2
Cn

j 2 Cn
j21

Dx
1 C22

j11/2
Cn

j11 2 Cn
j

Dx
5 0,

The Lax–Wendroff discretization [11] of Eq. (23) is sec-
ond-order accurate in space and time: (31)

with
j n11

j 2 j n
j

Dt
1

1
2SLn

j21/2 1SLn
j21/2D2 Dt

DxD j n
j 2 j n

j21

Dx

C11
j21/2 5 Lj21/2 L11

j21/2 L21
j21/2 , C22

j11/2 5 Lj11/2 L22
j11/2 L21

j11/2 .
1

1
2SLn

j11/2 2SLn
j11/2D2 Dt

DxD j n
j11 2 j n

j

Dx
5 0.

(25)

(32)
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Evaluation of the Jacobian matrix Cj11/2 from the values vent oscillations around the mechanical and thermal equi-
librium state; i.e., the sign of the relative velocity must notin the grid points j and j 1 1 is given in Section 8. A time

step of the scheme is limited by the CFL (Courant– change, and transition from subcooled to superheated, or
the reverse, is not allowed due to the interphase exchangeFriedrichs–Lewy) condition Dt # Dx/max(ulk u), k 5 1, 6.

The described numerical scheme becomes a standard sources. The applied explicit integration may be very slow
when the system is far from thermal or mechanical equilib-high-resolution shock-capturing method if:
rium and may require a few hundred time steps for one

—Eq. (19) can be written in conservative form, step of convection. However, as the system approaches
—conservative variables are chosen as components of equilibrium, the number of integration steps decreases rap-

the vector C, idly, and for systems near equilibrium (at which most pro-
cesses run) two to four steps are usually enough for the inte-—the appropriate Riemann solver is applied for evalua-
gration.tion of the Jacobian matrix C in j 1 1/2,

The effect of the sources from the second group is negli-—an entropy fix is applied for genuinely nonlinear char-
gible in the calculations presented in this paper. However,acteristic fields.
stiffness of the neglected wall heat transfer sources cannot
be excluded in advance in some extreme conditions in

6. SOURCES nuclear thermalhydraulics. Stiffness of the wall heat trans-
fer sources would cause an additional problem for the

Integration of the sources in Eqs. (13) is performed in
numerical method and would require a careful treatment.

a separated step using Strang operator splitting [16] and the
explicit second-order Euler method which allows variable 7. SINGLE TO TWO-PHASE FLOW TRANSITION
time steps. Sources in the equations of the two-fluid model
were divided into two groups in Section 2: There are two types of single to two-phase flow transi-

tion, and they both require replacement of the three-equa-
—Stiff source terms—terms describing interphase mass, tion model by a six-equation model:

momentum, and energy transfer which tend to establish
(1) Convection of the two-phase flow into the single-mechanical (vr R 0) and thermal equilibrium (Tf , Tg R Ts).

phase region, which can occur in any type of two-phase—Other terms which represent external forces (gravity,
flow is modelled by the first-order upwind scheme. Second-wall friction) and wall heat transfer.
order corrections require comparison of the characteristic
variables at neighbouring points. Three-equation modelLeVeque and Yee [18] have shown that stiff sources may
eigenvectors cannot be directly compared to six-equationaffect the propagation of the discontinuities and produce
model eigenvectors. An alternative approach, which im-spurious solutions. We have performed numerical tests
proves the accuracy at such points, is treating of the singlewhich have shown that stiff sources describing interphase
phase volumes as the two-phase volumes with a small arti-exchange in two-fluid models do not produce spurious solu-
ficial amount of the other phase (1028 ).tions. The tests were performed with different source terms

increasing their stiffness (increasing the heat transfer coef- (2) The second type of single to two-phase flow transition
ficients Hif , Hig and interphase friction coefficient CD by is vaporization or condensation when saturation conditions
a few orders of magnitude). The results of the tests have are reached, which is present only for the flows in which
shown that as the stiffness of the sources increases, the phase changes are possible. Fast depressurization of the
solutions of the two-fluid model tend toward the solution hot liquid is often met in transient analyses, while transients
of the equilibrium equations. Equilibrium equations of with rapid condensation of the gas phase—like condensa-
the presented two-fluid model are three equations of the tion-induced water hammer—are not so often encoun-
homogeneous equilibrium model of two-phase flow [30]. tered, but are also important. The simplest model for such
According to Pember’s conjecture [20], this convergence is a transition (which is used in RELAP5 and in PDE2 code)
a sufficient condition which guarantees that the numerical is the introduction of a very small amount of the new phase
method will not produce spurious solutions due to the when the saturation pressure is reached.
stiff sources. Equivalent problems that require comparable treatment

Stiff sources require integration with a time step, which appear during the two-phase to single-phase transition.
can be much lower than the time step of the CFL condition.
The time step for the integration of the sources is not 8. SIMULATIONS OF THE
constant and is controlled by the relative change of the DISCONTINUOUS SOLUTIONS
basic variables. In one step of the integration, the maximal
relative change of the basic variables allowed is 0.001. Equations of the two-fluid model are derived from the

instantaneous equations averaged over time and/or space.Additional criteria decrease the time step in order to pre-
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They cannot be written in conservative form due to the The best results were obtained when f was a vector of
nonconservative variables f 5 C 5 (p, a, vf , vg , uf , ug ).pressure gradient terms multiplied by phasic volume frac-
This type of averaging was recently tested by Gallouettions and the additional differential terms in the momen-
[10] with Euler equations and standard Sod’s shock tubetum equations. The question is, therefore, how to define
problems. He presented an excellent agreement of thethe Rankine–Hugoniot conditions which provide neces-
results calculated by the Roe approximate Riemann solversary additional information at the points where solutions
and with simple averaging (34) by averaging vector f 5are discontinuous and how to define the entropy condition.
(p, v, r). He named this approach as a ‘‘rough GodunovPart of the answer can be found in the work of Toumi
method.’’ He included the entropy fix, which is based on[30–32]. In 1992 Toumi [30] presented a weak formulation
the entropy condition derived for a conservative systemof Roe’s approximate Riemann solver [23] for conservation
of equations. Gallouet did not offer any mathematicallaws which cannot be written in the conservative form. He
background for his method.presented a technique for the construction of the Jacobian

In addition to the arithmetic averaging (34), we appliedmatrix for the equations written with the conservative vari-
LeVeque’s scheme for a nonconservative systems of equa-ables between the points j and j 1 1. Preliminary results
tions [17]. His method is equivalent to the evaluation offor the six-equation model of two-phase flow with interface
the matrix C eigenvalues in the grid points j and j 1 1,pressure term (12) were presented by Toumi in 1995 [31].
and evaluation of the state in j 1 As as a combination ofToumi’s technique becomes very complicated if the virtual
the left and right eigenvalues and eigenvectors, dependingmass term with temporal and spatial derivatives is used
on the eigenvalues sign:instead of the interface pressure term which contains spa-

tial derivatives only. It turns out that for more complicated
additional differential terms even evaluation of the Jacob-

lk, j11/2 5 5lk, j lk, j 1 lk, j11 , 0

lk, j11 lk, j 1 lk, j11 . 0,
(35)

ian matrix for the conservative variables becomes a prob-
lem (see Section 8.1). Toumi concluded in 1996 [32] that
‘‘the solution of Riemann problem is unknown for our non-
conservative system’’ and ‘‘there is no theoretical back-

lk, j11/2 5 5lk, j lk, j 1 lk, j11 , 0

lk, j11 lk, j 1 lk, j11 . 0.ground to ensure that computed shocks have always cor-
rect speeds.’’

In this paper we avoid the use of Toumi’s approximate
The inverted LeVeque method was also tested,Riemann solver. We, rather, performed the calculations

with different simple types of averaging between the
neighbouring grid points and with different types of the

lk, j11/2 5 5lk, j lk, j 1 lk, j11 . 0

lk, j11 lk, j 1 lk, j11 , 0,
(36)

basic variables. This section presents an estimate for the
uncertainties due to the unknown Rankine–Hugoniot con-
ditions and an inaccurate Riemann solver.

lk, j11/2 5 5lk, j lk, j 1 lk, j11 . 0

lk, j11 lk, j 1 lk, j11 , 0,8.1. Averaging

According to Roe [23], the Jacobian matrix of Eq. (19)
for the Riemann problem can be evaluated as an integral as well as another type of arithmetic averaging,
along the straight line linking states fj and fj11 :

lk, j11/2 5 0.5(lk, j 1 lk, j11 ), lk, j11/2 5 0.5(lk, j 1 lk, j11 ).

(37)C(fj , fj11 ) 5 E1

0
C(fj 1 s(fj11 2 fj )) ds. (33)

Comparison of the results with the above four different
Since the integrals (33) may not emerge in closed form, types of averaging are shown in Fig. 2 for the equations
other techniques are usually used (Roe averaging [23], with a virtual mass term and Toumi’s shock tube from
Toumi [30]), which ensure the correct speed of the disconti- Section 4. Solutions calculated by both types of arithmetic
nuities. The first method tested with the two-fluid model averaging (34) and (37) are very similar and lie between
is a simple average for the evaluation of the state between the solutions with LeVeque’s and inverted LeVeque’s av-
the points j and j 1 1. Arithmetic averaging used in the eraging, and so the results with averaging (35) and (36)
PDE2 code presents a simple approximation of Eq. (33): can be treated as an estimate for the error made due to

the inaccurate Riemann solver. This error is much lower
than the uncertainty due to the additional differential termsE1

0
C(fj 1 s(fj11 2 fj )) ds P C((fj 1 fj11 )/2). (34) (Fig. 1).
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8.2. Conservative and Nonconservative Variables With relation (39), Eq. (19) is transformed into

Another test of the numerical method was made with
the different vectors of the basic variables in Eq. (19). w

t
1 QCQ21 w

x
5 0. (41)Equations of the two-fluid model written with conservative

variables are still in nonconservative form. A conservative
form does not exist for the momentum Eq. (3) and (4) due
to the pressure gradient terms and additional differential The eigenvector and inverse eigenvector matrices are

then transformed:terms. Total energy equations which are derived from the
momentum equations (3), (4) and internal energy equa-
tions (5), (6) are also in nonconservative form. Only conti-

L R QL, L21 R L21Q21. (42)nuity equations (1), (2) can be written in the conservative
form. A few test calculations have been thus performed
with conservative variables in order to examine how the With such an approach the same numerical method de-
choice of the basic variables in the equations affects the so- scribed in Section 5 can be used for equations written with
lutions. conservative and nonconservative variables. Additional

The Jacobian matrix of conservative variables contains tasks, in comparison to the nonconservative variables case,
very complicated expressions due to the additional differ- are evaluations of the matrices Q and Q21 and transforma-
ential terms and that makes the explicit expression for the tions (42). CPU time consumption is only slightly in-
Jacobian matrix for the conservative variables practically creased, but the advantage of this approach is that the
useless. Explicit evaluation of the Jacobian matrix has been same eigenvalue and eigenvector subroutines can be used
avoided by the following procedure: the variation of the as in the nonconservative case.
vector of the conservative variables, The most important additional task, which is very de-

manding from the standpoint of the CPU time consump-
w 5 [(1 2 a)rf , arg , (1 2 a)rf vf , argvg ,

(38) tion, is evaluation of the equations of state: the pressure
and vapour volume fraction have to be determined from(1 2 a)rf (uf 1 v2

f /2), arg (ug 1 v2
g /2)],

the conserved quantities:

can be expressed with variation of the vector of the basic
variables C 5 (p, a, vf , vg , uf , ug ) as p 5 p((1 2 a)rf , arg , (1 2 a)rf (uf 1 v2

f /2), arg(ug 1 v2
g/2)),

dw 5 Q dC, (39) a 5 a((1 2 a)rf , arg , (1 2 a)rf (uf 1 v2
f /2), arg(ug 1 v2

g/2)).

(43)with the transformation matrix

Q 5

(1 2 a)
rf

p
2rf 0 0 (1 2 a)

rf

uf
0

a
rg

p
rg 0 0 0 a

rg

ug

(1 2 a)
rf

p
vf 2rf vf (1 2 a)rf 0 (1 2 a)

rf

uf
vf 0

a
rg

p
vg rgvg 0 arg 0 a

rg

ug
vg

(1 2 a)
rf

p Suf 1
v2

f

2 D 2rfSuf 1
v2

f

2 D (1 2 a)rfvf 0 (1 2 a)Srf 1
rf

uf
Suf 1

v2
f

2 DD 0

a
rg

p Sug 1
v2

g

2 D rgSug 1
v2

g

2 D 0 argvg 0 aSrg 1
rg

ug
Sug 1

v2
g

2 DD

(40)
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A very expensive iterative procedure is used in the con- dynamics of an inviscid two-component mixture of ideal
gases described by three Euler equations and an additionalservative variables code since pressure and specific internal

energy are required as input parameters for the RELAP5 equation for the concentration of one component. Oscilla-
tions near the contact discontinuity occur in the solutionswater property subroutines. Efficient use of the presented

schemes with the conservative variables would require new of the two-component model when the material properties
are different on each side of the discontinuity and standardwater property subroutines with conservative variables as

input and p, a as output parameters. Roe-type numerical schemes are applied. Karni [14] has
shown that these oscillations are avoided if the three EulerFigure 3 presents a comparison of the vapour velocities

calculated with conservative variables (38), nonconserva- equations are written with nonconservative variables
(p, v, r). He presented a numerical scheme with noncon-tive variables, and with the third set of the so-called

mixed variables: servative variables and with correction which reduces the
nonconservation error near the discontinous solutions.

The behaviour of the six-equation two-fluid model isq 5 ((1 2 a)rf , arg , vf , vg , (1 2 a)rf (uf 1 v2
f /2),

(44) more complex than that of the four-equation two-compo-
arg (ug 1 v2

g/2)), nent model. This is shown in Fig. 4, where the vapour
velocity profile was calculated with Toumi’s shock tube

where the continuity and energy equations are written with initial conditions, but with a higher vapour volume fraction
conservative variables and the momentum equations with in the left side of the tube aL 5 0.9 (instead of 0.25 as in
nonconservative variables. Only the vapour velocity is pre- Figs. 1–3). Figure 4 shows that solving the equations with
sented in Fig. 3, while the other variables show a similar nonconservative variables also produces a nonphysical os-
behaviour. Toumi’s shock tube case and two-fluid model cillation; not in the contact discontinuity but in the shock
with a virtual mass term and without sources has been and rarefaction wave. The oscillations in Figs. 3 and 4
used on a grid of 150 cells and Dt 5 9.5 3 1025 s. Arithmetic have a similar source. Figure 4 shows the advantage of the
averaging (34) was used in all cases. equations written with mixed variables (44)—oscillations

Similar rarefraction and shock waves are predicted in are avoided if conservative variables are used for the mass
all three cases in Fig. 3, while nonphysical oscillation in and energy equations and nonconservative variables are
the ‘‘conservative variables’’ solution can be observed for used for the momentum equations. The results of the con-
other waves. Such oscillations are not the common oscilla- servative variables are not shown in Fig. 4; simulation was
tions associated with high order numerical schemes and not possible due to the very strong oscillations near the
were first observed in the modelling of multicomponent contact discontinuities.

We may conclude that the choice of the different basicflows. Karni, 1994 [14] and Abgrall, 1996 [1] analyzed the

FIG. 3. Influence of the different basic variables on the Toumi’s shock-tube problem solution at time t 5 0.00489 s (aL 5 0.25, aR 5 0.1).
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FIG. 4. Influence of the different basic variables on the shock-tube problem solution at t 5 0.00489s. Large initial vapour void fraction jump:
aL 5 0.9, aR 5 0.1.

variables does not have a significant impact on the continu- in Section 4. Figures 1–4 in the previous sections present
ous solutions of the equations. However, differences can the results for unrealistic two-phase flow without source
appear around the strong discontinuities. Two types of terms in the equations. The grid in Figs. 1–4 has 150 vol-
errors can occur in such points: umes and Dt 5 9.5 3 1025 s. The results shown in Fig. 5

are obtained by a two-fluid model with a virtual mass—Oscillations at the material interfaces. These can
term, nonconservative variables, and the omitted sourcecause significant problems when the equations are solved
terms. The figure presents the total energy profiles forwith conservative variables. The equations solved with
Toumi’s shock tube with a membrane at 2.5 m, Dt 5nonconservative variables can also produce some weaker
5.6 ? 1025 s 5 0.96DtCFL , grid 300 volumes, and a highlyoscillations near the shock and rarefaction waves, while
compressive superbee flux limiter [16]. A first-order accu-the oscillation-free results were obtained with mixed vari-
rate solution (limiters in Eq. (29) are set equal to zero) isables (44).
added in Fig. 5 in order to check the advantage of the—A second type of error near the discontinuities is a
second-order accurate schemes. The solution at timenonconservation error. This error requires careful control
0.00417 s in Fig. 5 contains a shock wave, a rarefactionof the overall mass and energy when the transients are
wave, and a wave which contains four waves belonging tosimulated with nonconservative variables. The entropy fix
l3 to l6 . The total energy profile in Fig. 5 at time 0.1625has to be applied for the elimination of the discontinuities
s contains the other four waves, while the shock wavethat violate the entropy conditions.
and the rarefaction wave at that time travel beyond the

Uncertainty due to the inaccurate Riemann solver is not observed pipe length. As expected, the solution of the
negligible. However, comparison of Figs. 2–4 and Fig. 1 Riemann problem for six equations consists of seven con-
shows that the Riemann solver uncertainty is small, com- stant states separated by six waves.
pared to the uncertainties in the additional differential Figures 6 and 7 present the importance of the source
terms. As will be shown in the following sections, the Rie- terms in the two-fluid models. The PDE2 pressure and
mann solver uncertainty is also small compared to the vapour volume fraction on Figs. 6 and 7 were calculated
uncertainties in the source terms. From that point of view, for Toumi’s shock tube, with and without source terms.
arithmetic averaging (34) seems to be an acceptable The pressure profile at time 0.00489 s shows the lower
approximation for the evaluation of the Jacobian matrix.

shock and rarefaction wave speeds when the sources are
included. The pressure calculated with the sources at time9. SHOCK-TUBE RESULTS
0.1027 s in Fig. 7 is lower than the ‘‘no sources’’ pressure
at that time due to the initial thermal nonequilibrium be-Toumi’s two-phase shock tube problem [31]—the Rie-

mann problem for the two-fluid model—has been defined tween both phases, which gradually vanishes. Due to the
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FIG. 8. Calculated pressure history 1.5 m from the closed end of the pipe in the first 0.003 s.

momentum interphase transfer, relative interphase veloc- simple geometry and the wide range of phenomena that
it covers. Edwards and O’Brien filled a 4-m long pipe, crossity is much lower than in the case without sources. That

means that four very similar eignevalues exist, and splitting section 0.00456 m2, with liquid water at 7 MPa and 502 K
and suddenly ruptured one end of the tube (break crossof the vapour volume fraction ‘‘contact discontinuity’’ into

two waves is very weak compared to the ‘‘no source’’ case. section 0.00397 m2 ). They measured pressures and vapour
volume fractions during the blowdown at a few pointsA single wave visible at time 0.1027 s, in fact, contains two

waves which are not well separated. along the pipe axis. Important phenomena observed were:
pressure rarefaction wave, flashing onset, critical two-
phase flow, and vapour volume fraction wave.10. EDWARDS PIPE RESULTS

The results in Figs. 8–11 were predicted by RELAP5,
second-order PDE2 code with minmod limiter, and first-The Edwards pipe experiment [9] is used as one of the

basic benchmarks for the two-phase flow codes due to its order PDE2 code. Nonconservative variables have been

FIG. 9. Break flow predicted by PDE2 codes and RELAP5.
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FIG. 10. Measured and calculated pressure history 1.5 m from the closed end of the pipe.

used in the PDE2 calculations. Grid-independent results There are two main differences in the mathematical
were obtained with the discretization of the pipe into 80 models of PDE2 and RELAP5 codes which are responsible
volumes (Dx 5 5cm), except for the pressure rarefaction for differences between RELAP5 and first-order PDE2
wave on Fig. 8. The width of the rarefaction wave is very results (codes with different numerical schemes of the
low, since the wave travels through the single phase liquid. same accuracy):
An accurate description would require a grid with Dx P

(1) Flow through the break. PDE2 code predicts the1 mm (the estimate is based on the analytical solution
critical flow through the break from the basic equations.of the single-phase Riemann problem [11]). The steepest
An artificial rapidly diverging nozzle has been added be-rarefaction wave on Fig. 8, calculated with second-order
hind the break in PDE2 simulations which enables criticalPDE2 code with the superbee limiter and the grid of 160

volumes, is thus still too wide. flow calculations to be made. The nozzle was large enough

FIG. 11. Measured and calculated vapour void fraction 1.5 m from the closed end of the pipe.
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and, thus, it did not affect the behaviour inside the pipe It was shown that additional differential terms have a
due to the flow choking at the break point. RELAP5 cannot strong impact on the behaviour of the equations and on
predict the critical flow from the basic equations of the two- their solutions in the area of fast transients. Additional
fluid model because its numerical scheme is not suitable for differential terms are less important in the area of slow
that purpose [29]. A simplified model is used instead, which (nonacoustic) transients, where the source terms play a
is derived from simplified mathematical models and empir- major role and thermal and mechanical nonequilibrium
ical correlations [34]. Figure 9 shows the RELAP5 and between phases is small.
PDE2 break flows. The nonconservative form of the equations and the ab-

sence of the Rankine–Hugoniot conditions for the two-(2) Correlations for slug and annular flow regimes were
fluid models may be a problem when discontinuous solu-neglected in the PDE2 simulations, and less accurate inter-

polation between the bubbly and droplet regimes has tions are present. It was shown that the error introduced
been used. by the numerical scheme due to inaccurate treatment of

the discontinuities is relatively small, compared to the un-The expected differences between the first- and second-
certainty of the equations, and that simple averaging mayorder PDE2 results are seen in Figs. 8–11—the waves
be sufficient for the evaluation of the two-fluid modelpredicted by the second-order scheme are steeper. The
Jacobian matrix.agreement between measured and calculated pressure

The results of the two-phase shock-tube problem andhistories at the point 1.5 m from the closed end of the
the Edwards pipe problem show significant uncertaintiespipe (Fig. 10) is very good; however, this is an expected
in the mathematical models of the general two-phase flowresult since the pressure is always about the saturation
which are usually larger than the uncertainties of the ap-values in dispersed flows due to the rapid interphase mass
plied numerical schemes. The results show important ad-and heat transfer. Significant differences, which stem from
vantages of the second-order schemes in the area of fastthe nonaccurate closure laws, can be seen in the vapour
transients with acoustic waves. For long lasting transients,volume fraction at the same point (Fig. 11). The first dis-
where source terms play a major role, the advantages ofcrepancy is encountered at the beginning of the transient
the second-order schemes are of minor importance. In that(0–0.03 s), where rapid measured increase of the vapour
case, the uncertainties of the closure laws in the sourcevolume fraction was not predicted by RELAP5 or PDE2
terms become much larger than the numerical diffusioncodes. An additional discrepancy occurs at times 0.16 s–
errors of the first-order schemes. Second-order accurate0.25 s, where measured vapour volume fraction wave con-
schemes have prospects in the area of transients, wheretains a few oscillations which cannot be seen in any of
waves have to be traced and numerical diffusion has tothe models. Except for the rarefaction wave predicted on
be reduced. Second-order schemes will also be useful forFig. 8, Figs 9–11 show that the uncertainties of the mathe-
developing new mathematical models and closure laws inmatical model are larger than the accuracy improvement
two-phase flows, where numerical errors will have to bedue to the second-order accurate scheme in Edwards
reduced as much as possible.pipe modelling.
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